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Abstract: Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging 
technique that elicits growing interest for research and clinical applications. In the last 
decade, efforts have been made to develop a mathematical framework in order to image the 
effective sources of hemoglobin variations in brain tissues. Different approaches can be used 
to impose additional information or constraints when reconstructing the cerebral images of an 
ill-posed problem. The goal of this study is to compare the performance and limitations of 
several source localization techniques in the context of fNIRS tomography using individual 
anatomical magnetic resonance imaging (MRI) to model light propagation. The forward 
problem is solved using a Monte Carlo simulation of light propagation in the tissues. The 
inverse problem has been linearized using the Rytov approximation. Then, Tikhonov 
regularization applied to least squares, truncated singular value decomposition, back-
projection, L1-norm regularization, minimum norm estimates, low resolution 
electromagnetic tomography and Bayesian model averaging techniques are compared using a 
receiver operating characteristic analysis, blurring and localization error measures. Using 
realistic simulations (n = 450) and data acquired from a human participant, this study depicts 
how these source localization techniques behave in a human head fNIRS tomography. When 
compared to other methods, Bayesian model averaging is proposed as a promising method in 
DOT and shows great potential to improve specificity, accuracy, as well as to reduce blurring 
and localization error even in presence of noise and deep sources. Classical reconstruction 
methods, such as regularized least squares, offer better sensitivity but higher blurring; while 
more novel L1-based method provides sparse solutions with small blurring and high 
specificity but lower sensitivity. The application of these methods is also demonstrated 
experimentally using visual fNIRS experiment with adult participant. 
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1. Introduction 

Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique 
growing in popularity both in the research and clinical realms due to several distinct 
advantages. First, the ability to interact directly with the participant during recording is a 
major advantage, especially in pediatric populations or with individuals with significant 
cognitive and behavioral impairments. Second, recent development of portable fNIRS 
systems makes cognitive and clinical experiments easier and less costly than functional 
magnetic resonance imaging (fMRI) [1]. Although the temporal resolution of fNIRS is higher 
than it is for fMRI, its spatial resolution is relatively low (~5 to 10 mm) with a depth of ~2 to 
3 cm into the cortical surface due to the limited penetration of diffuse light sources into 
tissues [2]. fNIRS measurements can be used to infer images in 3D, reflecting those areas 
where the light has undergone changes in intensity, a technique called diffuse optical 
tomography (DOT). The head tissues are highly scattering medium, and light propagation 
can be described by the diffusion approximation (DA), which is an approximation of the 
radiative transfer equation (RTE) [3]. Analytical solution exists for the DA in simple 
geometry but solving it in complex medium such as brain tissues is non-trivial. In the case of 
complex and inhomogeneous geometries, such as brain tissues, an accurate way to solve the 
DA is to use a discrete model based on the optical properties of each tissue (i.e., scalp, skin, 
cerebrospinal fluid, grey matter, and white matter). Discrete approaches, such as finite 
element modeling (FEM) or numerical Monte Carlo simulation, can then be applied [4–8]. A 
discretized solution using finite element modeling (FEM) for realistic head mesh geometry 
has been added to the NIRFAST [7] and TOAST + + [8] software programs. Modeling light 
transmission from sources to sensors across the head is known as the forward problem in 
DOT. In most cases, standard brain templates are sufficiently effective to solve this forward 
problem [9,10]. However, the use of brain templates may lead to significant errors in forward 
model geometry under certain circumstances, notably in clinical settings when dealing with 
patients who have had brain surgery or present CSF or skull asymmetries [2]. The forward 
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problem has been solved for realistic geometries using a Monte Carlo approach [5,6,9], 
which simulates the absorption, scattering, reflectance and anisotropy of each tissue in 
individual 3D head geometry. This approach involves few assumptions on the medium 
geometry which may reduce the localization error in DOT reconstruction [11,12]. 

The localization of the absorption changes along the way of the diffuse light is possible 
using the relationship between the boundary measurements on the scalp and laws of light 
propagation. This leads to an underdetermined inverse problem, i.e. to an ill-posed problem 
that does not have a unique solution. In fact, the boundary measurements might be explained 
by a linear variation resulting primarily from a hemodynamic change within the head 
volume. Scattering and absorption are possible to identify using nonlinear iterative 
reconstruction methods based on the Newton conjugate gradient or Gauss-Newton 
approaches and considering phase and intensity measurement using Frequency-domain 
system. This study will emphasize only on reconstruction using light intensity variations 
measured by continuous wave fNIRS systems, which can be easily applied in multiple 
clinical scenarios given their relatively low cost and the ease with which they can be 
miniaturized [13]. Due to the non-uniqueness of the solution, several approaches have been 
proposed to solve this inverse problem, such as the least squares method with and without 
Tikhonov regularization as implemented in NIRFAST [7], and the back-projection (BP) 
algorithm used in PMI toolbox (PMI Laboratory, Athinoula A. Martinos Center for 
Biomedical Imaging, Charlestown, MA, USA). These methods, together with the truncated 
singular value decomposition (tSVD) [14] usually lead to smooth solutions, thus yielding 
blurry reconstructed images rather than focused activations [15,16]. Therefore, a variety of 
sparse image reconstruction methods, such as those based on minimizing the L1-norm of the 
solution, have been introduced in DOT [17–21]. In addition, intensive research to solve 
similar ill-posed linear problems has been conducted in magnetoencephalography (MEG) and 
electroencephalography (EEG), leading to the development of various methods for source 
localization [22]. Based on this knowledge, several alternative approaches can be adapted to 
DOT, such as: minimum norm estimates (MNE) [23], low resolution electromagnetic 
tomography (LORETA) [24] and Bayesian model averaging (BMA) [25]. To our knowledge, 
only very few papers have used the Bayesian approach to solve this type of fNIRS inverse 
problem [26–28]. One group has tried a hierarchical Bayesian model for DOT in human 
brains [26,27] in which different Gaussian priors are used for the blood flow in the scalp 
(smoother) and the cerebral blood flow. Miyamoto et al. (2015) proposed the same 
variational Bayes procedure using the typical prior of automatic relevant determination for 
the activations, which is similar to minimum norm estimates but using a different 
hyperparameter to control sparsity of the activation in each voxel [28]. These two methods 
do not use the BMA approach as this implies evaluating the goodness of different models to 
solve the inverse problem. The method based on the Bayesian formalism that we use in this 
paper has been shown to be an effective method to improve spatial resolution and decreasing 
ghost sources in electrophysiological brain imaging [25]. 

Similar to the EEG/MEG inverse problem, in the fNIRS context there is no clear way to 
know the exact true distribution of sources inside the brain in a particular state, making it 
impossible to decide which of the inverse solutions proposed in the literature is the correct 
one. The best approach is then to compare different methods using a large set of simulations 
covering all possible realistic tomographic configurations (complying or not with the 
assumptions made by each method) by using some measures of the quality of the 
reconstruction. So far, very few comparisons of these reconstruction techniques using fNIRS 
data have been published, leading to uncertainty about the best technique to solve this ill-
posed and ill-conditioned problem. Using a brain template and a semi-infinite medium, 
Habermehl and colleagues compared several inverse solutions (tSVD, MNE family, and 
beamforming) [10]. Other validations were also performed using a complex structure in a 
phantom material [15]. At the same time, there is not a unique set of quality measures to 
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assess the adequacy of the reconstruction, since complex configurations with more than one 
active source of different extent are very difficult to compare. In the EEG literature, it has 
been shown that simple linear measures such as Pearson correlation are not useful as the 
main attributes to explore are the capability of locating the main activation and estimating the 
extent of the sources [29,30]. In the last years, more general and nonlinear quality measures 
based on ROC analysis and the earth mover’s distance [31–33] have been added to the more 
traditional measures of localization error and blurring when comparing inverse problem 
methods [34,35]. 

In this study, we calculated the forward model using realistic individual 3D head 
geometry [6,11,12], and compared seven different reconstruction techniques. ROC curve 
analysis, blurring and localization error measures in presence of noise and deep sources were 
used as quality criteria to compare image reconstructions obtained from 450 simulated fNIRS 
data sets. The following reconstruction techniques for DOT were compared: Tikhonov 
regularization applied to least squares regression (rLSQR), truncated singular value 
decomposition (tSVD), back-projection (BP), L1-norm based regularization (L1), minimum 
norm estimates (MNE), low resolution electromagnetic tomography (LORETA) and 
Bayesian model averaging (BMA). Finally, these algorithms were also applied to 
experimental data acquired during a visual task to illustrate the validity of these DOT 
methods during a real fNIRS recording in a human participant. 

2. Materials and methods 

2.1 Linearization–forward model 

As the biological tissue is a highly scattering medium, the photon transport equation can be 
described as a diffusion process. In this condition, the DA equation depicts ( , )r ωΦ  (photon 

density in the position r at a modulation frequency ω) from the light source 0 ( , )q r ω  in a 

medium with diffusion coefficient ( )0( ) 1 3 ( ) (1 ) ( )a sr r g rκ μ μ= + − , absorption 0 ( )a rμ , 

scattering ( )s rμ  and anisotropy coefficient g: 

 ( ) ( ) ( ) ( ) ( )0 0 0( , ) , , ,ai N r c r r r r q rω ω κ ω μ ω ωΦ − ∇ ∇Φ + Φ =  (1) 

where N is the refractive index and c0 is the speed of light in the vacuum. In a continuous 
wave equipment, the frequency ω = 0, whereas using a frequency domain instrument, the 
light is modulated by frequency ω≠0. In the fNIRS context and with both types of 
instruments, we measure light intensity to estimate the hemodynamic variations occurring a 
few seconds after a stimulation. Although the DA equation is nonlinear, in the context of 
fNIRS it could be linearized by using the Rytov approximation to achieve image 
reconstruction [3]. The first Rytov approximation estimates the logarithmic perturbation 
between the optical densities in two states ( Φ  and 0Φ , the latter corresponding to an initial 

state at time 0t ), also known as delta optical density (dOD): 
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In this case, the scattering coefficient variations are negligible relative to chromophore 
absorption [36] thus the scattering coefficient may be assumed to be constant. As the 
absorption perturbation Δµa (proportional to hemoglobine variation) is small compared to 
absorption in tissues themselves, the forward problem can be discretized and linearized as a 
function of time (t), position of the source (rs), position of the detector (rd) and light 
wavelength ( λ ) which define the tissues optical properties: 
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where G represents the Green’s function of Eq. (1) (solution of the homogeneous equation). 
An analytical closed form for this function is very difficult to obtain in a head model with 
realistic geometry and optical properties, therefore these functions are computed by using a 
Monte Carlo simulation approach. Basically, numerical Green’s functions are computed as 
the normalized photon density (photon fluency) between each boundary measurement 
(defined by a pair of source and detector) and each voxel inside the brain. Details of the 
Monte Carlo procedure using the diffusion, absorption and scattering coefficients of the 
tissues and a realistic geometry of the brain is described in the next section. In Eq. (3), 

,( , , )s iG r r λ  is the photon fluency from the source rs as it spreads into the medium to i-th 

voxel ri, ,( , , )d iG r r λ  is the photon fluency from the detector rd as it spreads into the medium 

to i-th voxel ri and ( , , )s dG r r λ  is the photon fluency from the source rs evaluated at the 

detector position rd. The sum is over all possible n voxels inside the brain that can be reached 
by the light. 

Equation (3) represents a linear relationship between measurements dOD and the 
absorption perturbation 0a a aμ μ μΔ = −  in every voxel of the brain volume. This equation 

can then be stated in a linear matrix form: 1 1y =A xm m n n× × × , where 1ym×  is the dOD vector 

(log-ratio between the measured optical density before and after blood flow perturbation) for 
every m pairs of laser sources and detectors (i.e. a boundary measurement). The image to be 
reconstructed 1x n×  represents the absorption perturbation aμΔ  in the discretized volume of n 

voxels. The sensitivity matrix Am n×  represents the relative contribution of absorption in 

voxels inside the brain to each of the boundary measurements. Each element of this matrix is 
calculated by combining the Green’s functions involved in Eq. (3), and each i-th column can 
then be interpreted as the delta optical density that would be measured if a variation in 
absorption of unit magnitude occurs only in the corresponding i-th voxel in the brain. 

2.2 Light propagation – Monte Carlo simulation 

Photon fluency in the initial condition, i.e. without perturbation of absorption due to brain 
activity, was computed by using the diffusion equation to simulate photon migration with a 
Monte Carlo (MC) procedure [6]. Monte Carlo is a statistical simulation method in which the 
paths of photons are traced as they are scattered and absorbed within the medium. The 
medium was defined using magnetic resonance imaging of an individual anatomical 1.5-T 
T1-weighted scan (Magnetom Vision, Siemens Electric, Erlangen, Germany), with an 
isotropic voxel size of 1 mm3 to identify tissue geometry. Skin, skull, cerebrospinal fluid 
(CSF), and grey and white matters were segmented. Automatic segmentations were 
computed on CSF, white and grey matters (SPM8, Wellcome Department of Imaging 
Neuroscience, University College, London, UK) [37]. Skin and skull were segmented using 
Brainsuite14C [38]. Visual inspection was performed to ensure the quality of segmentation. 
Positions of sources, detectors, and fiducial markers (nasion, left and right preauricular 
points) were digitized on a subject’s head with a stereotactic system (BrainsightTM 
Frameless 39, Rogue Research, Canada). Anatomical MRI and position measurements were 
co-registered using a rigid body transformation. Eight sources and eight detectors were 
placed over the occipital cortex, for a total of 64 boundary measurements (i.e. source-detector 
pair). All measurements with a distance higher than 5 cm were excluded from analyses since 
they had a pSNR lower than 10dB in experimental data. Measurements with a source-
detector distance between 3 and 5 cm, which are the optimal distances for fNIRS [39], were 
kept for analyses, for a total of 54 measurements (Fig. 1(A)). For each of them, the Monte 
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2.3 Reconstruction methods 

Seven inversion methods were compared. While a brief description of each method is 
provided here, more detailed explanations of these techniques can be found in the literature. 
rLSQR, tSVD and BP methods were computed using Regularization Tools version 4.0 for 
Matlab 7.3 [43,44], the L1 method [45] was computed using the L1-LS toolbox (publicly 
available at http://www.stanford.edu/~boyd/l1_ls/) while BMA, MNE, and LORETA [15–
17] were solved using the commercial software Neuronic Source Localizer [46]. In this work, 
we are considering the linear underdetermined inverse problem of the form: 

 y Ax ξ= +  (4) 

where y  represents the data vector with m elements, x  the unknown vector of n elements 

and A is the sensitivity m n×  matrix, for the case in which m n . As the measurements are 
always affected by external sources of noise, this problem needs to be solved taking into 
account the error or noise term ξ . The methods we use and compare here are described as 

follows. 

2.3.1 Regularized least squares by QR decomposition (rLSQR), truncated singular 
value decomposition (tSVD) and back-projection (BP) 

The regularized least squares approach (rLSQR) is based on classical Tikhonov 
regularization by adding a penalty or regularization term to the least squares function that 
needs to be minimized [43,47]. The regularization term is a constraint or penalty on the 
solution that represents “a priori” information about the system and usually improves the 
estimated solution and reduces its sensitivity to noise. In our case, this term consisted in the 
squared Frobenius norm of the difference between the solution and the initial condition 

00x aμ=  (i.e. the constant value of the brain tissues without perturbation). The solution is 

then found as: 

  ( )x

2 2

0x y Ax (x x )argminrLSQR α= − + −  (5) 

The influence of the penalty term is adjusted by the regularization parameter α . The choice 
of this parameter will fundamentally affect the reconstructed image. To adjust this parameter, 
we used an automatic procedure based on the L-curve criteria. This consists in exploring the 
L-curve, i.e. the plot of the norm of the residual error for a particular regularized solution 

y Ax( )α−  versus the norm of the regularized solution x( )α . Assuming that the optimal 

regularization parameter α  is a trade-off between these two magnitudes, its value is selected 
as the one corresponding to the point with the highest curvature for a logarithmic range of α  
values [48]. 

A simpler approach, the tSVD, attempts to compute the pseudo-inverse of the sensitivity 
matrix without taking into account the smallest singular values that lead to the numerical 
unstability. In this way, the solution will only reflect the main contribution of the sensitivity 

matrix [14]. Given the singular value decomposition of A as: 
1

A
M t

i i ii
u σ ν

=
=  (where the 

orthonormal column vectors ui and vi are the left and right singular vectors respectively, 
while iσ  are the nonnegative singular values in a non-increasing order); the solution can be 

found by multiplying its inverted form by the boundary measurements: 

 
1

y
x t

T
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SVD
u ν
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=  (6) 
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If A is full rank, both M and Mt represent the number of measurements. Otherwise, the sum 
in Eq. (6) is “truncated” to discard the terms corresponding to singular values that are zero or 
very small. To find an optimal value for the number Mt of singular values to consider, the L-
curve criteria was also employed, i.e. Mt corresponded to the point of highest curvature in the 
L-curve [48]. 

An even simpler approach, the BP technique, consists of back-projecting the boundary 
measurements in the sensitivity matrix as follows [49,50]: 

 x A yT
BP =  (7) 

This approach can be interpreted as assuming that the sensitivity matrix is orthogonal in a 
general sense (e.g. AT being an estimate of its pseudo-inverse). Although it usually leads to 
an overestimation of the amplitude in the presence of overlapping measurements, this method 
has been used in the literature [51,52] and included in the PMI toolbox (PMI Laboratory, 
Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA) to perform 
basic image reconstruction. 

2.3.2 L1-norm regularization applied to least squares regression (L1) 

When the changes in absorption for a particular experiment are expected to occur in a small 
area inside the brain, the reconstructed DOT images should be spatially sparse (i.e. show 
only nonzero values in a few voxels). This information can be added in the regularization 
approach by using as a penalty term the L1-norm of the solution, in the form: 

  ( )x

2

1
x y Ax xargminL1 α= − +  (8) 

The L1-norm of the solution (
1

x ) is the sum of the absolute values of its elements. In 

general, this equation does not have analytical solution, thus leading to the use of several 
different iterative algorithms. This in part explains the wide range of L1-based methods that 
have been proposed in the DOT context [17–19,21,49,53–56]. The performance of this type 
of solution for accurately locating true activations depends on the algorithm as shown by 
previous studies, but they all similarly lead to sparse reconstructed images [56]. 

In this work, we will use a simple L1 least squares procedure, based on a truncated 
Newton interior-point method described in [45] and publicly available online (L1-LS 
Toolbox, http://www.stanford.edu/~boyd/l1_ls/). Although it is designed to work faster when 
the sensitivity matrix is sparse, which is not our case, we chose this method as it can handle 
high-dimensional data with an acceptable computational speed [20,45]. Like the other 
methods compared here, the regularized solution depends on the choice of the regularization 
parameter α . In previous works this has been usually selected ad hoc in a range of 0.1-0.01, 
depending on experimental noise levels [20]. However, we decided to use the L-curve 
method to select an optimal parameter in the same way as we did with the rLSQR and tSVD 
solutions, in order to carry out a fair comparison. 

2.3.3 Minimum norm estimates (MNE) and low resolution electromagnetic 
tomography (LORETA) 

MNE and LORETA can also be formulated as instances of the regularization approach. They 
both use a regularization term consisting in the squared L2-norm of the solution. In the case 
of MNE, the rationale is to assume that the best solution is the one with minimum overall 
energy, i.e. the one with the smallest L2-norm [23]. Therefore, the solution is found as the 
one that minimizes a cost function as: 

  ( )2 2
xargmin || y Ax ||  || x |x |MN α= − +  (9) 
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This formulation allows to simply derive an equation for the solution, which depends on the 
regularization parameter: 

  1x (A A ) A yT T
MN nα −= + Ι  (10) 

where In is the n n×  identity matrix. Note that the effect of α  is precisely to regularize the 

(quasi-) singular matrix A AT , by adding this constant value to every diagonal element. 
Although this equation includes the inverse of a very large matrix, the computational cost can 
be significantly reduced by using the singular value decomposition of the sensitivity matrix, 
making it a very fast and simple estimation. Typically, the main activations estimated by this 
solution are biased to be very close to the position of the measurement sensors. This is 
explained by the fact that lights coming from deeper sources are more attenuated, and this is 
reflected in the sensitivity matrix, which means that the solutions will tend to have the 
highest values closest to the sensors. 

With a very similar formulation, LORETA finds the smoothest solution by introducing a 
spatial roughness operator L in the penalty term [24]. This roughness operator is a discrete 
version of the Laplacian operator (i.e. second spatial derivatives), so asking for a minimal 
second derivative will end up with very spatially smooth solutions. The LORETA solution is 
found from: 

  ( )2 2
xargmin || y Ax| |x || Lx ||LORETA α= − +  (11) 

  1(A Ax L L) A yT T T
LORETA α −= +  (12) 

The Laplacian operator can incorporate in practice the information about each voxel’s 
neighborhood and implicitly considers boundary conditions, i.e. how to penalize edge voxels 
with fewer neighbors than deeper ones. This type of condition usually penalizes the edges 
and the main activations tend to “move” to locations with many neighbors. Thus, LORETA 
typically outperforms MNE in terms of both bias towards surface sources and localization 
error, but it does not completely solve these problems. These two solutions, as well as the 
rLSQR, tSVD and BP, are known as linear inverse methods as the estimated solution is a 
linear combination of the measurements (see Eqs. (6), (7), (10), (12)). 

These two solutions strongly depend on the choice of the regularization parameter α  and 
suffer from an additional problem that is common to all distributed linear inverse methods: 
the existence of ghost activations, i.e. when using simulated sources, these methods tend to 
show more sources than the simulated ones [24,57]. In both cases, MNE and LORETA, the 
regularization parameter can be chosen by heuristic methods such as the L-curve, or the 
minimization of information criteria such Akaike’s, Bayesian’s or of the generalized cross-
validation function (GCV) [58]. For computing these solutions we obtained the optimal 
regularization parameter by minimizing the generalized cross-validation function using 50 
values in a logarithmic range, as implemented in Neuronic Source Localizer software [46]. 

2.3.4 Bayesian model averaging (BMA) 

Although BMA is usually referred to as a statistical method itself, this general framework 
can also be used in conjunction with any of the methods described before. In our case, we 
will use the original implementation of the BMA applied to the solution of the EEG/MEG 
inverse problem using a version of LORETA solution constrained to anatomical models [25]. 
Mathematically, this approach uses a full Bayesian formulation of the problem, which starts 
by assuming a normal probability density function (pdf) for the measurement noise that in 
turn defines the pdf of the data y given the unknown parameters x: 

 ( ) ( )y x,θ Ax, θp N=  (13) 

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 3004 



This term is known as likelihood and θ represents all other parameters involved in the 
distribution (hyperparameters), for instance the variance, which can be treated as known or 
unknown. The estimation of the parameters (inverse solution) is based on the Bayes theorem 
which offers a way to compute its “a posteriori” pdf as: 

 ( ) ( ) ( )
( )

y x,θ, x θ,
x y,θ,

y θ,
k k

k

k

p H p H
p H

p H
=  (14) 

In this equation we have used θ again for representing the hyperparameters, now including 

also those coming from the “a priori” pdf ( )x θ, kp H . We have also included explicitly a 

variable kH  for representing the k-th model assumed, i.e. any other particular choice for the 

model, such as the spatial correlation matrix or the subset of elements to be used in the 
estimation. This equation allows what is known as the first level of inference, i.e. estimating 
the solution with highest posterior probability by finding the value of the vector x that 
maximizes the numerator of the equation. The denominator can be regarded as a 
normalization constant (it does not depend on x and therefore it does not affect the estimation 
of the solution) and computed by integrating the numerator over x. This magnitude is also 
called the “evidence” of the hyperparameters, interpreted as the probability of the data for a 
particular given set of hyperparameters θ. If the hyperparameters are assumed to be 
unknown, the second level of inference can be written with the Bayes theorem again to find 
the posterior pdf for θ: 

 ( ) ( ) ( )
( )

y θ, θ
θ y,

y
k k

k

k

p H p H
p H

p H
=  (15) 

From this equation, we can estimate the most probable values of the hyperparameters which 
are equivalent to the regularization parameters in the classical regularization approaches 
previously explained. In this sense, instead of evaluating the solution for many possible 
values and deciding heuristically which one is best, the Bayesian formalism allows us to 
obtain update equations and use iterative algorithms to estimate both parameters and 
hyperparameters. Then, again, the denominator of this equation can be computed by 
integrating the numerator over the hyperparameters. This pdf is also called the “evidence” for 
the model kH , i.e. the probability of the data given a chosen model, which can be interpreted 

as a measure of how good is the chosen model to explain the measured data. The third level 
of inference is then to find the posterior pdf of the models using the Bayes theorem again: 

 ( ) ( ) ( )
( )

y
y

y
k k

k

p H p H
p H

p
=  (16) 

Finally, the Bayesian model averaging consists in marginalizing over all models to find a 
posterior pdf of the solution, independently of the chosen model: 

 ( ) ( ) ( ) ( ) ( )x y x y, y x y, y
k

k k k kall H
k

p p H p H p H p H= =  (17) 

In this way, the BMA approach takes into account the uncertainty in the model kH to use. In 

the original implementation of the BMA for the EEG inverse problem [25], the authors 
decided to use different combinations of brain regions as anatomical models, as defined from 
the anatomical segmentation in the Montreal Probabilistic Brain Atlas [59]. This means that 
BMA finds a solution for every possible model (solving the first and second levels of 
inference) and averages all individual solutions weighted by the corresponding evidences, 
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which will favor models that receive more support from the data and penalize those with low 
evidence. It has been demonstrated that this implementation of BMA can address the bias 
towards cortical sources that affects the linear inverse solutions, allowing for the estimation 
of deeper sources with greater accuracy. Additionally, it provides solutions with significantly 
less localization error and higher resolution as compared to traditional methods. 

As with the original implementation, here we use the first and second levels of inference 
(for each model) with the mathematical priors that lead to a solution equivalent to LORETA 
but using the Bayesian updates for the regularization parameters instead of the L-curve or the 
GCV heuristic methods. However, in the case of fNIRS, the light does not reach all parts of 
the brain and it does not make sense to use all regions of the brain as models. Moreover, 
when using too many models it is impossible to compute all of them and a very 
computationally expensive Markov Chain Monte Carlo algorithm is needed to explore 
models in a probabilistic way. Therefore, to test the conceptual performance of the BMA in 
the context of fNIRS inverse problem, we follow here a simple preliminary application of the 
method in which anatomical prior models are obtained by dividing the brain area reached by 
the light, mainly the visual cortex, into four quadrants. This means that we will have 24 = 16 
possible models and therefore they can all be computed, avoiding the use of the Markov 
Chain Monte Carlo algorithm. Future work could be devoted to studying other anatomical or 
spatial models that more closely reflect the biophysical aspects of the fNIRS measurements. 

2.4 Simulation data and statistical analysis 

A total of 450 activations were simulated. Each was a set of binary activated voxels at 
different positions over the region of interest. For each method, a combination of single (150 
simulations) and multiple (150 simulations) square-like active clusters, with volumes from 3 
to 20 mm3, were randomly placed in a selected anatomical model in order to cover a wide 
variability of cortical activation scenarios in the first ROI excluding CSF, with a light 
intensity of 0.001%, in a grid of 4032 isotropic 2x2x2 mm3 voxels (Fig. 1(B)). Additional 
simulations were prepared to compare the performance of the methods in the presence of 
noise and deep activations. Gaussian noise was added to simulated data in order to have a 
peak Signal-to-Noise ratio of pSNR = 20dB. This is a typical value which was in fact 
measured in average in our in-vivo raw data by using the intensity recorded in boundary 
measurements with a very long source-detector distance (around 7.5 cm) as a measure of the 
noise. The pSNR is defined as the ratio between the maximum value of the signal (dOD) and 
the standard deviation of the Gaussian noise in dB units: 

 10

max( )
20 log

noise

dOD
pSNR

σ
 

=  
 

 (18) 

Finally, to study the performance of the methods when estimating deep activations, 150 
additional square-like clusters of 20 mm3 in size, were simulated with 25 to 50 mm depth 
from the skin surface, in a larger second ROI with a new grid of 35115 voxels with light 
intensity higher than 0.0001%. 

Several quality metrics are used to discriminate the methods. Since reconstruction is a 
continuous variable evaluated for each voxel, the statements of an active or inactive voxel 
will change based on the threshold selection. Receiver operating characteristic (ROC) graphs 
have the ability to evaluate a binary classifier as its discrimination threshold varies [60]. 
These graphs have been previously used to measure the quality of the reconstruction in 
inverse problem [22,32,61,62]. ROC graphs are plots of the sensitivity vs. (1-specificity) for 
all possible thresholds of the reconstructed image. In our case, the sensitivity is the ratio of 
voxels active in the simulation (true activations) that were also active in the reconstruction, 
while specificity is the ratio of all non-active voxels in the simulation that were estimated 
also as non-active. As the selection of an optimum threshold T is usually difficult and 
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depends on the problem at hand, a typical measure of the overall ability for reconstruction is 
the area under the ROC curve (AUC), which is 1 for a perfect reconstruction and around 0.5 
for a random reconstruction. In practice, a threshold must be defined to establish a particular 
solution. Therefore, several methods have been proposed to derive an optimal threshold from 
the ROC curves obtained for large data sets, which can then be applied (generalized) to new 
data where there is no gold standard. In this work, we select the threshold that maximizes the 
Youden index (sensitivity + specificity – 1) [63,64]. We averaged the thresholds 
corresponding to this index for all the simulations to select a common overall threshold to be 
applied to all inverse solutions for a fair comparison. Using the common threshold, we report 
the values of sensitivity, specificity and accuracy, which is the ratio of correct classifications 
(either active or not active voxels) over all voxels. 

A gradient-based measure of blurring and localization error were used to evaluate the 
performance of the different reconstruction algorithms. A common measure of image quality 
evaluates the blurring of the reconstructed sources by estimating the root mean squared 
(RMS) of the gradient [65]: 

 2

1

1 n

i
i

Blurring x
n =

= ∇  (19) 

A high value indicates a blurred image, while a low value indicates an image with a sharp 
contour. The absolute difference between the values of this measure for the estimated 
solution and for the initial simulated cluster is reported as a relative measure of blurring. 

Localization error consists in the Euclidean distance between the center of the simulated 
target and the location of the maximum peak of the estimated solution and can be calculated 
in all cases where only one cluster was active: 

 
__ x xpeak true peakLocalization error = −  (20) 

Finally, a non-parametric Friedman rank test was used to compare the performance of the 
methods across all simulations [66]. Post hoc Tukey analysis was applied to report the 
methods that were statistically identical to the best-ranked method. The median of the 
localization error and the associated Friedman rank test are reported in presence of noise and 
deep cluster simulations. 

2.5 Experimental data acquisition and analysis 

It is always of interest to see how reconstruction algorithms work with real data. The same 
configuration of 8 sources (690 and 830 nm wavelengths) and 8 detectors was used to record 
a healthy participant with an Imagent Tissue Oximeter (ISS Inc., Champaign, Ill, USA). This 
equipment is a frequency domain system. However, in the current study, we consider only 
light variation intensity (DC intensity) to measure hemoglobin concentration using a 
formulation of the Beer-Lambert law [3]. Therefore, the intensity signal is comparable to a 
signal provided by a continuous wave instrument. A healthy right-handed 25-year-old 
woman was exposed to a visual stimulation. Each of the ten blocks of stimulation included a 
15-seconds fixation cross period, followed by a 30-seconds stimulation and a 15-seconds 
fixation cross period. Each stimulus was composed of a high-contrast black and white 
checkerboard presented in either the left or right lower corner of the screen at a reversing 
frequency of 2 Hz (Fig. 4(A) and (E), bottom). This experiment was chosen based on the 
well-known cytoarchitecture of the human visual cortex, which is characterized by a 
functional organization map of a point-to-point inversed projection from retina to cortex 
(retinotopic effect). Based on previous studies [67,68], the lower right corner visual 
stimulation is expected to evoke a superior left visual cortex response, whereas the lower left 
stimulus should induce a superior right visual cortex hemodynamic response. Using this 
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paradigm, we aimed to investigate the effectiveness of the reconstruction algorithms to 
spatially localize individual data and show the retinotopic effect. 

Following data acquisition, measurement distances between 3 and 5 cm were kept for the 
analysis. Distances larger than 5 cm were all contaminated by noise (pSNR < 10dB) and 
excluded from the simulation and in vivo analysis. Movement artifacts are characterized by a 
high frequency and very abrupt change in light intensity; these periods were removed from 
the analysis [69]. The dOD was calculated to measure the light variation between the pre-
stimulus period of 5 seconds ( )00 , ,,s dr r tλΦ  and the stimulation ( ), ,,s dr r tλΦ , as stated in 

Eq. (2). A low-pass filter of 0.1 Hz was applied to remove cardiac and breathing artifacts. 
The ten blocks were averaged over a period of 25 s (from 10 to 35 s from the beginning of 
the stimulation period) to obtain the boundary measurement for two wavelengths λ1 = 690 
nm, λ2 = 830 nm. The inverse problem was applying on HbO and HbR directly [70] using the 
formulation of the Beer-Lambert law as: 

 HbO 1 1 HbR 1 11

HbO 2 2 HbR 2 22

(λ )A(λ ) (λ )A(λ )(λ ) [HbO]

(λ )A(λ ) (λ )A(λ )(λ ) [HbR]

dOD

dOD

ε ε
ε ε

Δ    
=     Δ    

 (21) 

where [HbO]Δ  and [HbR]Δ  are the concentration variations of the chromophores 

oxyhemoglobin and deoxyhemoglobin in the blood, respectively. The parameter ε  is the 
extinction coefficient for each wavelength and each chromophore [71]. 

3. Results 

3.1 Comparison of source localization methods 

Image reconstruction methods were compared based on several image quality criteria: AUC, 
sensitivity, specificity, accuracy, gradient-based blurring, and localization error. Friedman 
analysis classifies methods according to each of these quality criteria, such that the highest 
rank (7) means the best performance and lowest rank (1) means the worst performance. Since 
the results of the Friedman classifications were similar for both wavelengths (690 and 830 
nm), only results from 830 nm wavelength simulations are reported. Table 2 reports 
Friedman average ranks and the mean values for each of these quality measures. The post 
hoc Tukey-Kramer analysis identified the methods that are equivalent to the best rank 
method (highlighted in gray in Table 2). Overall, BMA showed relatively good and stable 
ranks across all different quality measures (4.5 or higher), while rLSQR and L1 method 
showed the best ranks in particular measures. The good performance of BMA is based on a 
small localization error (mean of 8.6 mm, rank 5.1) and a low blurring (15.9, 5.0), together 
with acceptably high specificity (95.9%, 4.8), and accuracy (92.7%, 4.8). In the few cases 
BMA offered an incorrect localization, the simulated clusters were located in two or more 
different areas of the prior atlas segmentation of BMA (see Fig. 5 in the Appendix). rLSQR 
showed the best average ranks among all methods on the AUC (mean of 94.1%, rank of 6.2) 
and sensitivity (73.6%, 5.7), which means that it is always finding activations around the real 
active sources. However, the source distribution is usually more blurred and spread out than 
the original simulation (38.4, 2.9). As expected, L1 method showed the best performance for 
specificity (97.6%, 6.9) and accuracy (94.2%, 6.9) -at the expense of the worst sensitivity 
(1.7%, 1.3)- as it provided the sparsest solutions, which also make it similar to BMA in 
providing the best relative blurring (3.3, 5.8) i.e. the most focus activation. To better nuance 
the limitations of each algorithm, single and multiple activated clusters were analyzed 
separately. For all criteria, the classification in terms of average ranks was the same when 
using a single and multiple clusters, and all methods showed better performance with a single 
cluster compared to multiple clusters. 
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Table 2. Quality measures of reconstruction (830 nm) for the different methodsa 
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rLSQR 94.1 6.2 73.6 5.7 93.5 4.2 90.4 4.2 38.4 2.9 7.8 4.0 

tSVD 91.9 5.5 63.0 4.9 94.0 4.3 90.8 4.3 38.3 3.2 9.6 3.5 

BP 78.4 3.2 67.1 5.3 75.7 1.2 73.1 1.2 42.2 0.3 16.1 1.9 

L1 80.5 3.6 1.7 1.3 97.6 6.9 94.2 6.9 3.3 5.8 17.0 2.7 

MNE 71.1 2.6 24.9 2.5 96.1 4.5 92.9 4.5 38.3 3.0 23.2 1.1 

LORETA 68.8 2.3 45.6 3.9 84.8 2.0 81.9 2.0 41.3 0.8 18.4 2.6 

BMA 75.7 4.6 56.9 4.5 95.9 4.8 92.7 4.8 15.9 5.0 8.6 5.1 

Q2  814  982  1330  1330  1482  331 

p-value  < 10-5  < 10-5  < 10-5  < 10-5  < 10-5  < 10-5 
aThe best methods according to the Friedman rank were identified by post-hoc Tukey-Kramer analysis and 
highlighted in gray (significantly different from the others but not among them). 

 
Typical solutions obtained from the 90, 70, 30 and 10 percentiles of the average AUC 

distribution, are shown in Fig. 2 as examples of the reconstructed images; the highest 
percentiles being the more accurate results, regardless the method. Note that rLSQR and 
tSVD accurately depicted the simulated cluster with some blurring. BMA reconstruction is 
sharper, i.e., better in terms of specificity; however, it fails to reconstruct some clusters 
(localization error higher than 1 cm in 9% of the simulations). The L1 solution always 
showed the sparsest images as estimated activations consisted of one to three voxels 
maximum (smaller than real activations), but it did not always placed the activations in the 
right location. BP overestimated the amplitude in many voxels leading to high blurring and 
low specificity, while MNE and LORETA presented the worst performance in terms of AUC 
over simulations. 

Additional simulations were performed to investigate the effect of additive Gaussian 
noise and depth activation on the localization error. The median localization error across the 
different types of simulations are presented in Fig. 3. The Friedman ranks for this simulation 
study are reported in Table 3 and again BMA showed the more stable performance along all 
conditions (highest average rank of 4.5). With the Gaussian noise, LORETA has the highest 
Friedman rank followed by the BMA and L1 methods. In addition, the Friedman rank 
increased in noisy data with respect to noise-free simulations for L1, MNE and LORETA 
probably due to an effective regularization, while it decreases for BMA, rLSRQ, tSVD and 
remain similar for BP. When reconstructing simulations with deep sources, LORETA and 
BMA also showed the highest ranks. Nevertheless, for simulations deeper than 25 mm, the 
median error is higher than 10 mm for all methods, suggesting that none of the methods is 
highly reliable for estimation of deep sources (Fig. 3). In Fig. 6 in the Appendix, we show a 
scatter plot of the distribution of localization error vs. the depth of activation for all 
simulations for noise-free and noisy data. 
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and reconstructions of HbO and HbR variation using BMA (C, G) and rLSQR (D, H). Those 
methods were selected because they showed the highest average ranks across all criteria in 
the previous evaluation (see Table 2 and Table 3). As expected, a cluster of activated voxels 
in the left occipital lobe (Talairach coordinates: −20, −90, −4) for the right visual stimulation 
was found for HbO and HbR. Similarly, a cluster of activated voxels was found in the right 
occipital lobe in response to the left visual stimulation (Talairach coordinates:14, −95, −4). 
These results are in agreement with retinotopic organization of the visual cortex as 
demonstrated by previous fMRI and fNIRS studies [67,68]. 

4. Discussion

In addition to a reliable estimation of the location and size of the main activations, the best 
reconstruction method should combine high sensitivity (ability to find the active sources) and 
specificity (ability to avoid ghost sources, i.e., estimated sources located where there is no 
activity). Also, in simulations, the AUC is a good general measure to show how well 
reconstructed are active and non-active voxels in an image independently of an arbitrary 
threshold selection. Our results across 450 different simulation scenarios suggest that the 
rLSQR and BMA methods are the most flexible methods and therefore the most appropriate 
for the analysis of real fNIRS data. On the one hand, rLSQR is a fast computation method, 
which has been widely used in DOT reconstruction [7,72]. Moreover, it is stable, always 
identifies sources close to the actual ones and is less sensitive to noise than BP and tSVD if 
the regularization parameter is adequately selected. However, the source distribution is 
usually more blurred and spread out than the original simulation (Fig. 2). On the other hand, 
among all techniques, BMA provided the best overall results (highest average ranks), mainly 
due to a high specificity and a small blurring and localization error, even in the presence of 
noise and deep activations. 

A major problem with classical methods for DOT is that they often provide heavily 
blurred images [15,16]. Our results, in accordance with previous studies, showed that the L1 
method has the ability to provide sparser reconstructed images and reduce the blurry effect 
on the images, at the cost of higher computational burden. However, it does not totally 
compensate for the depth of the sources and not always provide accurate localization [14,20]. 
Even when this method showed similar localization errors than the other blurred estimates, 
such sparse images show a clear separation between estimated and real sources while blurred 
images show activations that cover the position of the real source even if the maximum 
activation is not exactly located in the right voxel. It is worth to mention that in our study we 
have used an L1 least squares algorithm for computing the L1 solution base on a truncated 
Newton interior-point method [45]. This is a simple approach that allowed fast computations 
to make the comparison using hundreds of simulations feasible, (recall that we needed to 
compute 50 solutions for different regularization parameters to select an optimal value using 
the L-curve method). This method seemed to work well as localization errors did not increase 
in the presence of noise. However, the truncated Newton interior-point method can work less 
efficiently if the regularization parameter is too small, and/or the columns of the sensitivity 
matrix are highly correlated [45]. Although we believe that our comparison results reflect the 
general behavior of L1-based sparse solutions [56], we do not discard the possibility that 
other variants using tailored algorithms can lead to better performance in the type of 
simulations explored here. 

Using BMA, the sources correctly reconstructed are visually close in size and localization 
from the simulated ones. To our knowledge, BMA is not commonly used in fNIRS inverse 
problem reconstruction. Therefore, it would be interesting to further investigate the potential 
of this method with regard to its excellent specificity, combined with a good localization. 
Although many simulations achieved the best reconstruction using BMA, this method failed 
to reconstruct the source at the correct localization in a few cases (less than 10%) similarly to 
other methods. Some refinement in the original BMA method [25] might improve the 
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performance in a DOT context. In this study, we used a simple non-realistic approach for the 
anatomical atlas, which consisted in dividing the occipital cortex into four large regions. We 
observed that most of the cases where BMA offered an incorrect localization, the simulated 
clusters were located in two or more different areas of the prior atlas segmentation of BMA. 
This could be explained by the fact that BMA behaves like a model selection method, such 
that usually only one model survives in the averaging processing. As further exploration, a 
more realistic anatomical or different prior segmentation might also be considered in the 
future using BMA. 

According to our simulations, tSVD can also be considered a good option for DOT, as it 
generated stable results similar to rLSQR. However, BP, MNE, and LORETA are not the 
best candidates for estimating sources in fNIRS data. The back-projection (BP) technique is 
conceptually simple but tends to overestimate the cerebral response where multiple boundary 
measurements overlap. MNE and LORETA are not the best methods according to the ranks 
obtained with the Friedman test (Table 2) in the case of noise-free data, but they perform 
much better in the presence of additive noise with respect to the localization error. In most 
simulations, the quality measures obtained using these two solutions were just behind those 
given by the other methods, except for some simulations where MNE estimated less blurred 
solutions. It should also be pointed that these methods were computed using the Neuronic 
Source Localizer software, specifically oriented to the estimation of EEG/MEG sources. For 
instance, this software uses the generalized cross-validation function [58] adjusted for EEG 
and MEG applications for selecting the regularization parameter, which might not be optimal 
in the fNIRS context. 

As a general point, in this work we computed the normalized reconstructed images (i.e. 
after estimation each image was divided by its maximum value), following a common 
practice in DOT [12]. In this context, researchers using these methods recommend focussing 
on evaluating the ability of correct localization of the maximum values and spatial 
distribution of sources, as we did here with the quality measures analyzed in Table 2. 
However, the study on the ability to correctly estimate the magnitude of variation of 
absorption should be carried out in the near future. Another interesting point to consider 
while performing source localization analyses is the computational efficiency. Although the 
Monte Carlo simulation might be costly in computational time, the duration of the calculation 
has been reduced by a factor of 300 compared to the original version by using the 
Accelerated Graphics Processing Units [5,6]. For the inverse solution calculation, all 
techniques used in the current study are quite fast at computing, except for L1 method and 
the BMA that has a variable computational time. First, it varies according to the size of the 
grid. For example, the simulation using the BMA method takes a few seconds with a grid of 
4032 voxels compared to a few minutes with a grid of 35112 voxels. The calculation time 
will also be affected by the number of models to explore. 

Theoretically, DOT estimation entails its own limitations, which cannot be overcome by 
the use of any of the specific reconstruction techniques evaluated here. One limitation of this 
study is that the exact values of the optical parameters of the tissues (µa0, µs, g, N) are 
unknown in this specific human participant. For each tissue, standard values from the 
literature [40] were used rather than measuring the optical properties of the participant’s 
tissues. In addition, this study only investigates changes in blood oxygenation measured 
using the attenuated light and the modified Beer-Lambert law and a linearization of the DA 
equation with the Rytov approximation. This method provides a linear relationship to fNIRS 
data and assumes the scattering coefficient variations are negligible relative to chromophore 
absorption [3,36]. Another limitation is that DOT resolution is limited by the number of 
boundary measurements at the surface. We used 54 measurements to cover the occipital 
cortex and the average localization errors were less than 1 cm close to the surface and 2 cm 
in deep tissues using BMA reconstruction. This geometric configuration was chosen to 
maximize the spatial sensitivity over the region of interest [62]. This configuration appeared 
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to be more sensitive than the regular “star” montages (sources surrounded by detectors) due 
to a higher number of overlapping measurements. In order to reconstruct images within a 1 
mm3 scale with a highly scattering medium, the number of overlapping measurement sensors 
must be very high (e.g., over 107), which is not achievable in practical clinical recordings 
[15]. In this work, the participant’s MRI was carefully segmented instead of using a template 
brain atlas. The anatomical MRI helped to improve spatial localization of DOT by providing 
improved geometric modeling of the inhomogeneity in brain tissues and use of cortical 
spatial constraint [11]. Accurate modeling of the light in the volume could further minimize 
the effects of the forward problem assumptions on the localization error and the other quality 
measures [12]. In a clinical context, because it is not always possible to meet every technical 
requirement to perform DOT, a quick projection of the measurements onto a template or an 
individual MRI-derived scalp—as presented in Fig. 4(B) and (F)—may adequately 
regionalize the activity without the spatial accuracy of DOT. This representation is 
interesting, especially when there is too little overlap in the sensors to perform the inverse 
estimation with a good resolution. 

In the current study, the simulations were designed to cover different sizes of activations 
and different numbers of clusters, not necessarily complying with the typical constraints 
imposed by the methods, to reveal the limitations of the reconstruction algorithms. We 
created these realistic simulations instead of using phantom tissues to obtain a large number 
of scenarios. Recent developments of geometrically complex 3D-printed phantom using a 
standard 3D printer will allow us to test, in the future, inverse methods with precisely known 
properties and geometries for complex configurations [73]. 

5. Conclusions 

In conclusion, our findings suggest that the reconstruction technique must be chosen 
carefully in order to obtain an accurate localization. The performance of most of the methods 
declined when multiple regions of the brain were active, as well as in presence of noise or 
deep sources. Simulation results suggested that BMA provides images with less blurring and 
lower localization error, even in the case of noisy data and deep sources. The BMA 
algorithm, initially designed for EEG and MEG, showed promising results in DOT and may 
be further improved using rLSQR or L1-norm regularization instead of LORETA in 
computing the solution for each anatomical model. rLSQR is robust to additive Gaussian 
noise and offers the best AUC and sensitivity, but more blurred reconstructed images than 
BMA. L1 method provides the sparsest solutions, but this leads to a poor performance in 
terms of sensitivity. Based on these simulations, rLSQR approaches proved to be appropriate 
for computing DOT and its concurrent use with BMA might improve specificity and reduce 
blurred images. Source localization in real fNIRS data of a visual stimulation experiment, 
also showed results in concordance with retinotopic organization of the visual cortex as 
demonstrated by previous fMRI and fNIRS studies. We hope this study encourages a wider 
use of these techniques in the fNIRS context, given that an accurate image reconstruction is 
essential for a better understanding of fNIRS and multimodal studies in clinical or research 
purpose. 
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